Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression
نویسندگان
چکیده
منابع مشابه
Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression.
Carbon catabolite repression is an important mechanism allowing efficient carbon source utilization. In the soil bacterium Acinetobacter baylyi, this mechanism has been shown to apply to the aromatic degradative pathways for the substrates protocatechuate, p-hydroxybenzoate and vanillate. In this investigation, transcriptional fusions with the gene for luciferase in the gene clusters for the de...
متن کاملRole of Acinetobacter baylyi Crc in catabolite repression of enzymes for aromatic compound catabolism.
Here, we describe for the first time the Crc (catabolite repression control) protein from the soil bacterium Acinetobacter baylyi. Expression of A. baylyi crc varied according to the growth conditions. A strain with a disrupted crc gene showed the same growth as the wild type on a number of carbon sources. Carbon catabolite repression by acetate and succinate of protocatechuate 3,4-dioxygenase,...
متن کاملYeast carbon catabolite repression.
Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulator...
متن کاملCarbon catabolite repression in yeast.
Control of gene expression is a basic regulatory mechanism of living organisms. In microorganisms, glucose or other rapidly metabolizable carbon sources repress the expression of genes that code for enzymes related to the metabolism of other carbon sources. This phenomenon, known as catabolite repression, allows microorganisms to cope effectively with changes in the carbon sources present in th...
متن کاملMultiple operons connected with catabolism of aromatic compounds in Acinetobacter sp. strain ADP1 are under carbon catabolite repression.
Repression of enzymes contributing to degradation of aromatic compounds via the beta-ketoadipate pathway in the presence of additional carbon sources (carbon catabolite repression) in the bacterium Acinetobacter sp. strain ADP1 is described. The phenomenon was investigated on the level of specific activity of protocatechuate 3,4-dioxygenase and p-hydroxybenzoate hydroxylase participating in cat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microbiology
سال: 2008
ISSN: 1350-0872,1465-2080
DOI: 10.1099/mic.0.2008/016907-0